翻訳と辞書 |
ear decomposition : ウィキペディア英語版 | ear decomposition
In graph theory, an ear of an undirected graph ''G'' is a path ''P'' where the two endpoints of the path may coincide, but where otherwise no repetition of edges or vertices is allowed, so every internal vertex of ''P'' has degree two in ''P''. An ear decomposition of an undirected graph ''G'' is a partition of its set of edges into a sequence of ears, such that the one or two endpoints of each ear belong to earlier ears in the sequence and such that the internal vertices of each ear do not belong to any earlier ear. Additionally, in most cases the first ear in the sequence must be a cycle. An open ear decomposition or a proper ear decomposition is an ear decomposition in which the two endpoints of each ear after the first are distinct from each other. Ear decompositions may be used to characterize several important graph classes, and as part of efficient graph algorithms. They may also be generalized from graphs to matroids. ==Characterizing graph classes== Several important classes of graphs may be characterized as the graphs having certain types of ear decompositions.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「ear decomposition」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|